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How to study the QCD phase diagram...

... be brave and solve

Z (T , µB) =
∫
D(A,q,q†)e−SE

QCD

ab initio and nonperturbatively,

... be strong and collide heavy
ions at ultrarelativistic energies,

... be creative and study effec-
tive models of QCD. Leff
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Critical point

I m2
σ = ∂2V

∂σ2 → 0
I correlation length diverges

ξ = 1
mσ
→ ∞

I universality classes
for QCD: O(4) Ising model in
3d⇒ 〈σ2〉 ∝ ξ2

I renormalization group
I critical opalescence

⇒ Large fluctuations in thermal systems!



First order phase transitions

I two degenerate minima
separated by a barrier

I latent heat
I phase coexistence
I supercooling effects in

nonequilibrium situations
I nucleation
I spinodal decomposition

(I.N.Mishustin, PRL 82 (1999); Ph.Chomaz, M.Colonna,

J.Randrup, Physics Reports 389 (2004))

⇒ (Large) fluctuations in nonequilibrium situations!



Fluctuations at the critical point

non-monotonic fluctuations in pion and proton multiplicities

〈∆np∆nk 〉 = v2
p δpk +

1
m2

σ

G2

T
v2

p v2
k

ωpωk

(M. A. Stephanov, K. Rajagopal and E. V. Shuryak, PRD 60 (1999))

(NA49 collaboration J. Phys. G 35 (2008))

BUT: critical slowing down

(B. Berdnikov and K. Rajagopal, PRD 61 (2000))

Fluctuation measures based on the second moments are not
conclusive about the critical behavior.
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Definition of the kurtosis

susceptibilities of conserved charges (N: net-baryon, net-charge
number) or the experimentally feasible net-proton number

χn(T , µN) =
1

VT 3
∂n ln Z (V ,T , µN)

∂µn
N

∣∣∣∣
T

quadratic and quartic susceptibilities :

χ2 =
1

VT 3 〈δN2〉

χ4 =
1

VT 3 (〈δN4〉 − 3〈δN2〉2)

effective kurtosis:

K eff =
χ4
χ2

=
〈δN4〉
〈δN2〉

− 3〈δN2〉 ≡ κσ2 .



Higher moments at the critical point

Higher moments of the distribution of conserved quantities are more
sensitive to critical phenomena.

κ ∝ ξ7

(M. A. Stephanov, PRL 102, 032301 (2009))

The kurtosis is negative at the
critical point!

(M. A. Stephanov, PRL 107, 052301, (2011))



Kurtosis on the lattice

Thermodynamic susceptibilities can be calculated on the lattice.

Reproduces the HRG below Tc and the Stefan-Boltzmann limit at
high temperatures.
⇒ It has the potential to probe the confined and the deconfined
phase of QCD.
M. Cheng et al., Phys. Rev. D 79 (2009) 074505



Kurtosis in effective models

The effective kurtosis can be calculated in effective models, e.g. in
the Polyakov-loop extended quark-meson model:

in mean-field approximation and in FRG

(V. Skokov, B. Stokic, B. Friman, K. Redlich, Phys. Rev. C83 (2011) 054904.)



Motivation

I Fluctuations have so far been investigated in static systems.
I However, systems created in a heavy-ion collisions are finite in

size and time and inhomogeneous.
I Necessary to propagate fluctuations explicitly!

I Nonequilibrium chiral fluid dynamics:
I fluid dynamics +
I phase transition model +
I dissipation and noise



Nonequilibrium chiral fluid dynamics

I Langevin equation for the sigma field: damping and noise from
the interaction with the quarks

∂µ∂µσ +
δU
δσ

+ gρs + η∂t σ = ξ

I Fluid dynamic expansion of the quark fluid = heat bath

T µν
q = (e + p)uµuν − pgµν

I Energy and momentum exchange

∂µT µν
q = Sν = −∂µT µν

σ

=⇒ Selfconsistent approach within the two-particle irreducible effec-
tive action!

(MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011))



Semiclassical equation of motion for the sigma field

∂µ∂µσ +
δU
δσ

+ gρs + η∂t σ = ξ

damping term η and noise ξ for k = 0

η = g2 dq

π

(
1− 2nF

(mσ

2

)) (m2
σ

4 −m2
q)

3
2

m2
σ

〈ξ(t)ξ(t ′)〉 = 1
V

δ(t− t ′)mση coth
(mσ

2T

)
below Tc damping by the interaction with the hard pion modes, apply
η = 2.2/fm from (T. S. Biro and C. Greiner, PRL 79 (1997))



Reheating and supercooling

relaxation of the σ field temperature

I oscillations at the critical point
I supercooling of the system at the first order phase transition
I reheating effect visible at the first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962



Intensity of sigma fluctuations

dNσ

d3k
=

(ω2
k |σk |2 + |∂t σk |2)
(2π)32ωk

ωk =
√
|k |2 + m2

σ

mσ =
√

∂2Veff/∂σ2|σ=σeq

deviation from equilibrium

critical point

first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962



Pion fluctuations

So far: pion fluctuations were not considered and ~π = 〈~π〉 = 0.
Now: extend the model to explicitly propagate pion fluctuations, too.

critical point first order phase transition

Larger isospin fluctuations in a scenario with a first order phase
transition!



Correlation length

ξ1: averaged correlation length from ξ−1 =
√

∂2Ω
∂σ2

∣∣
σ=σ(x)

ξ2: correlation length obtained from fits to G(r ) = σ2
eq +

1
r exp(− r

ξ )

ξ3: averaged correlation length from ξ−1 =

√
∂2Ω
∂σ2

∣∣
σ=σeq



Relativistic Transport Approach

cover more effects in realistic simulations of heavy-ion collisions,
here: UrQMD (www.urqmd.org)

issues:
I eventwise baryon number and charge conservation instead of

grandcanonical ensembles
I centrality selection and centrality bin width effects



Analytic toy model
Baryon number conservation limits fluctuations of net-baryon number.

Pµ(N,C) = N (µ,C)e−µ µN

N !
on [µ−C, µ + C]

µ: the expectation value of the original Poisson distribution, N (µ,C):
normalization factor, C > 0: cut parameter

C = α
√

µ

(
1−

(
µ

Ntot

)2
)
.

α = 3, Ntot = 416.

I An increase of the average
net-baryon number does not
lead to stronger fluctuations.

I At the upper limit of
Ntot = 416 the distribution
changes to a δ-function
(K eff

δ = 0).



Net-baryon number distribution in UrQMD

I central Pb+Pb collisions at
Elab = 20AGeV

I fit to a Poisson distribution
I shoulders are enhanced
I tails are cut

=⇒ decrease from K eff
Poisson = 1

to K eff
UrQMD = −22.2

ratio of UrQMD to Poisson
distribution



Rapidity window dependence of the effective kurtosis

I Same qualitative behavior of the net-baryon kurtosis as expected
from the analytic toy model.

I Elab = 158AGeV
I The net-proton kurtosis

only slightly follows this
trend.

I The net-charge kurtosis is
not influenced, but error
bars are larger.

I For small net-baryon numbers in the acceptance, the values of
net-baryon, net-proton and net-charge kurtosis are compatible
with values of 0− 1.

T. Schuster, MN, M. Mitrovski, R. Stock, M. Bleicher, [arXiv:0903.2911 [hep-ph]



Energy dependence of the effective kurtosis

I adapting the rapidity
window to fix the mean
net-baryon number

I net-baryon effective
kurtosis does not show an
energy dependence

I fixed rapidity cut
I the net-baryon number

varies with
√

s
I for lower

√
s K eff becomes

increasingly negative
I at Elab = 2AGeV:
〈NB−B̄〉 ' 240

T. Schuster, MN, M. Mitrovski, R. Stock, M. Bleicher, [arXiv:0903.2911 [hep-ph]



Centrality selection, e.g. by impact parameter

We investigate central collisions with b ≤ 2.75 fm.
The superposition of two Gauss distributions (with mean µ1,2 and
variance σ1,2) has a negative kurtosis

K2 =
1/8∆µ4 + 3Σ2∆µ2 + 6Σ4

1/8∆µ4 + Σ2∆µ2 + 2Σ4 − 3 < 0

with ∆µ = |µ2 − µ1| and Σ2 = σ2
1 + σ2

2 .

The distribution approaches
a box-distribution with a
Kbox = −1.2.



Effects of centrality selection

Suggestion by STAR to reduce centrality bin width effects:

I calculate moments for each
fixed Ncharge in one wider
centrality bin

I take the weighted average

(STAR collaboration, Nucl.Phys. A862-863 (2011))

(MN et al., QM 2011 proceedings)

problems:

I (anti-) protons constitute a
larger fraction of all charged
particles with decreasing
energy

I fixing Ncharge puts a bias on
the fluctuations



Summary

I nonequilibrium sigma and pion fluctuations, correlation length in
chiral fluid dynamics

I effective kurtosis within a transport model of heavy-ion collisions
I negative values for net-baryon K eff below

√
s = 100 GeV

I baryon number conservation qualitatively described by a cut
Poisson distribution

I centrality selection remains a crucial issue!
Outlook:

I further study the acceptance effects in UrQMD
I extend nonequilibrium chiral fluid dynamics to study

event-by-event fluctuations


